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• Program with a mix of periodic / aperiodic tasks
– Address first scheduling of periodic tasks
– Add aperiodic tasks
– Add dependencies among tasks

• Demonstrate that a schedule is feasible given a set of tasks with their 
constraints and dependencies

– Use known bounds and elaborate a feasible schedule
– Compute bounds for blocking times

• Use the appropriate scheduling algorithm in simulation and practice
• Implement a system that meets timing constraints

– With functional safety concepts
– With timing constraints watchdogs



Dependent Tasks
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What is the concern?
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• Multi-tasking program often require 
to share resources among tasks

• Access to shared resources needs 
to be protected against concurrent 
access
– Mutual exclusion among competing 

tasks
– A piece of code executed under 

mutual exclusion is a critical section



Priority Inversion
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• Until now, we have considered that tasks are independent, sharing no 
resources, and not interacting. What if we remove this assumption?

– Scheduling of tasks is affected!
• One main problem arises: priority inversion

– High priority tasks may be blocked by lower priority tasks
• The main sources of priority inversion are

– Non preemptable sections
– Sharing resources
– Synchronization and mutual exclusion

• In all cases, the response time (latencies) are modified



Blocking of higher priority tasks
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Tasks of higher priority can be blocked by lower priority tasks

Note: in this slide deck, tasks with smaller indices have higher priorities



Unlimited blocking time (priority inversion)
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Blocking time of higher priority tasks may be unbounded



Solutions to Priority Inversion
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• Tasks are ’forced’ to follow certain rules when locking 
and unlocking a mutex 
– This is about requesting and releasing resources.

• The rules are often called Resource Access Protocols
– There are several existing such protocols

• What about the RTX scheduling algorithm? 
– RTX implements the priority inheritance mechanism



Resource Access Protocols
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• Need to consider the following points
– Is the priority inversion bounded?
– Does the protocol avoid deadlock?
– Does the protocol avoid unnecessary blocking?
– Is it easy to calculate the blocking time upper bound?
– What is the maximum number of blocking?
– Is it easy to implement?



Non-Preemptive Protocol (NPP)
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Principle: disallow pre-emption during the execution of any 
critical section

– A task is assigned the highest priority if it succeeds in locking a 
critical section

– The task is assigned its own priority when it releases the critical 
section



Non-Preemptive Protocol (NPP)
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• Advantages:
– This bounds priority inversion:

• For a given task, the bound is the maximal length of any single critical 
section belonging to lower priority tasks.

– It limits the number of blocking of any task to one
– It is deadlock free
– Implementation is easy and transparent

• But:
– It introduces unnecessary blocking: 

• Low priority tasks may block high priority tasks including those that do 
not require access to shared resources.



Non-Preemptive Protocol (NPP)
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Highest Locker’s Priority Protocol
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• Idea: define the ceiling C(S) of a critical section S to be the highest priority 
of all tasks that use S during execution.

– Note that C(S) must be calculated statically (off-line).

• Whenever a task succeeds in holding a critical section S, its priority is 
changed dynamically to the maximum of its current priority and C(S)

• When it finishes with S, it sets its priority back to what it was before.



Highest Locker Priority Protocol (HLP)
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• Advantages:
– It introduces a bound to the blocking time.
– It limits the number of blocking of any task to one.
– It is deadlock free

• But:
– Implementation is not transparent
– It still introduces unnecessary blocking

• Since blocking happens at task arrival – it may block a task that does 
not access the critical section or access it much later.



No deadlock with HLP
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• Once task 2 gets CS b, it runs with priority 𝑝𝑝1
• Task 1 will be blocked and cannot get CS a before task 2 



No chained blocking with HLP 
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Priority Inheritance Protocol (PIP)
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Principle: when a task blocks a task with higher priority, it 
temporarily inherits the highest priority of the blocked tasks.

– A task inherits the highest priority of the tasks it blocks
– The priority of a task leaving a critical section is updated as:

• The highest-priority task blocked by this CS is unblocked
• If no other task is blocked by the CS, its priority is set to its nominal value, 
• If other tasks are blocked by the CS, its priority is set to the highest-priority of the 

tasks blocked

– This prevents medium-priority tasks from preempting lower priority 
tasks and thus prolonging the blocking duration experienced by the 
higher-priority tasks.



Priority Inheritance Protocol (PIP)

21



Priority Inheritance Protocol (PIP)

22



Priority Inheritance Protocol (PIP)

23



PIP Properties
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• Push-through blocking
– A medium-priority task is blocked by a low-priority task that has inherited a 

higher priority
– It can happen only if a critical section is accessed both by a task with lower 

priority and by a task with higher priority
– Necessary to avoid unbounded priority inversion

• Transitive inheritance
– Can happen only in the presence of nested CSs

• Blocking time upper bound
– A task can be blocked for at most the duration of α critical sections, where α is 

min(𝑙𝑙, 𝑠𝑠)
• 𝑙𝑙 is the number of lower-priority tasks that can block the task
• 𝑠𝑠 is the number of distinct semaphores that can block the task



PIP Issue: Chained Blocking
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In the worst case, a high priority task may be blocked once by each of the lower priority task



PIP Issue: Deadlock
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PIP does not prevent deadlock



Transitivity for PIP
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Transitivity is needed
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PIP Implementation
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• Implementation is transparent
– It does require changes in the kernel but not in the 

application or in the kernel API
• Required changes in the data structure

– Each thread must store its nominal and active priority
– Inheritance: Each mutex keeps track of the thread holding the 

mutex
– Transitivity: Each thread keeps track of the mutex in which it is 

blocked



PIP Implementation
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• Mutex lock
– If Mutex is free:

• The mutex becomes locked
• The mutex keeps track of the thread locking the mutex.

– If Mutex is locked:
• The task calling the lock keeps track of the blocking mutex and it 

blocks.
• The priority of the thread locking the mutex is changed to the priority 

of the task calling the lock.
• If the task owning the mutex is blocked on another thread, the 

transitivity rule is applied.
• The ready task with the highest priority is executed.



PIP Implementation
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• Mutex unlock
– If no thread is blocked on the Mutex, then the mutex is simply unlocked.
– If one or more threads are blocked on the Mutex:

• The highest-priority thread blocked on the Mutex is awakened.
• It is stored as owner of the Mutex. 
• The priority of the thread unlocking the Mutex is updated.



Resource Access Protocols Summary 
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• Each protocol has advantages and disadvantages
• There are other protocols 
• Most RTOS implement PIP



Schedulability Analysis with Dependencies
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• Recall the schedulability test and hyperbolic test for 𝑛𝑛 tasks under RM
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• With dependent tasks, we may compute an upper bound 𝐵𝐵𝑖𝑖 for the 
blocking time of each task 

– Depending on the Resource Access Protocol
• Schedulability tests may be extended to include this upper bound

– Inflate the computation time 𝐶𝐶𝑖𝑖 by the blocking time 𝐵𝐵𝑖𝑖
– Blocking times are computed under worst-case scenarios for each task
– Worst-case scenarios cannot happen simultaneously for each task



Schedulability Analysis with Dependencies
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Rationale for extending schedulability analysis with blocking times
– In the worst case, each task can be blocked for the sum of durations of 

critical section of lower-priority tasks – only once.
– A task cannot be blocked by another task with higher priority
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Mutex vs Semaphore
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• Mutexes are often called binary semaphores
• But mutexes are NOT like semaphores
• Semaphores implement a mechanism for producer-consumer scenarios

– The task that acquires the semaphore is often not the same as the one that releases the 
semaphore

– Releasing a semaphore from an ISR context is allowed

• Mutexes implement a mechanism for exclusive access to a critical 
section

– The task that locks and unlocks the mutex is the same
– Accessing a mutex from an ISR context is not allowed
– Mutexes are recursive/reentrant while semaphores are not
– Mutexes implement a Resource Access Protocol (like PIP) while semaphores do not

• Implementation of semaphores and mutexes is different
– Do NOT use a binary semaphore as a mutex !
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