
MA_EmbReal
Dependent Tasks
Version: 1.5

Serge Ayer – Luca Haab | 28.04.2025 | Cours MSE

Recall: Our Mission

2

Recall: Our mission

3

• Program with a mix of periodic / aperiodic tasks
– Address first scheduling of periodic tasks
– Add aperiodic tasks
– Add dependencies among tasks

• Demonstrate that a schedule is feasible given a set of tasks with their
constraints and dependencies

– Use known bounds and elaborate a feasible schedule
– Compute bounds for blocking times

• Use the appropriate scheduling algorithm in simulation and practice
• Implement a system that meets timing constraints

– With functional safety concepts
– With timing constraints watchdogs

Dependent Tasks

4

What is the concern?

5

• Multi-tasking program often require
to share resources among tasks

• Access to shared resources needs
to be protected against concurrent
access
– Mutual exclusion among competing

tasks
– A piece of code executed under

mutual exclusion is a critical section

Priority Inversion

6

• Until now, we have considered that tasks are independent, sharing no
resources, and not interacting. What if we remove this assumption?

– Scheduling of tasks is affected!
• One main problem arises: priority inversion

– High priority tasks may be blocked by lower priority tasks
• The main sources of priority inversion are

– Non preemptable sections
– Sharing resources
– Synchronization and mutual exclusion

• In all cases, the response time (latencies) are modified

Blocking of higher priority tasks

7

Tasks of higher priority can be blocked by lower priority tasks

Note: in this slide deck, tasks with smaller indices have higher priorities

Unlimited blocking time (priority inversion)

8

Blocking time of higher priority tasks may be unbounded

Solutions to Priority Inversion

9

• Tasks are ’forced’ to follow certain rules when locking
and unlocking a mutex
– This is about requesting and releasing resources.

• The rules are often called Resource Access Protocols
– There are several existing such protocols

• What about the RTX scheduling algorithm?
– RTX implements the priority inheritance mechanism

Resource Access Protocols

10

• Need to consider the following points
– Is the priority inversion bounded?
– Does the protocol avoid deadlock?
– Does the protocol avoid unnecessary blocking?
– Is it easy to calculate the blocking time upper bound?
– What is the maximum number of blocking?
– Is it easy to implement?

Non-Preemptive Protocol (NPP)

11

Principle: disallow pre-emption during the execution of any
critical section

– A task is assigned the highest priority if it succeeds in locking a
critical section

– The task is assigned its own priority when it releases the critical
section

Non-Preemptive Protocol (NPP)

12

Non-Preemptive Protocol (NPP)

13

• Advantages:
– This bounds priority inversion:

• For a given task, the bound is the maximal length of any single critical
section belonging to lower priority tasks.

– It limits the number of blocking of any task to one
– It is deadlock free
– Implementation is easy and transparent

• But:
– It introduces unnecessary blocking:

• Low priority tasks may block high priority tasks including those that do
not require access to shared resources.

Non-Preemptive Protocol (NPP)

14

Highest Locker’s Priority Protocol

15

• Idea: define the ceiling C(S) of a critical section S to be the highest priority
of all tasks that use S during execution.

– Note that C(S) must be calculated statically (off-line).

• Whenever a task succeeds in holding a critical section S, its priority is
changed dynamically to the maximum of its current priority and C(S)

• When it finishes with S, it sets its priority back to what it was before.

Highest Locker Priority Protocol (HLP)

16

Highest Locker Priority Protocol (HLP)

17

• Advantages:
– It introduces a bound to the blocking time.
– It limits the number of blocking of any task to one.
– It is deadlock free

• But:
– Implementation is not transparent
– It still introduces unnecessary blocking

• Since blocking happens at task arrival – it may block a task that does
not access the critical section or access it much later.

No deadlock with HLP

18

• Once task 2 gets CS b, it runs with priority 𝑝𝑝1
• Task 1 will be blocked and cannot get CS a before task 2

No chained blocking with HLP

19

Priority Inheritance Protocol (PIP)

20

Principle: when a task blocks a task with higher priority, it
temporarily inherits the highest priority of the blocked tasks.

– A task inherits the highest priority of the tasks it blocks
– The priority of a task leaving a critical section is updated as:

• The highest-priority task blocked by this CS is unblocked
• If no other task is blocked by the CS, its priority is set to its nominal value,
• If other tasks are blocked by the CS, its priority is set to the highest-priority of the

tasks blocked

– This prevents medium-priority tasks from preempting lower priority
tasks and thus prolonging the blocking duration experienced by the
higher-priority tasks.

Priority Inheritance Protocol (PIP)

21

Priority Inheritance Protocol (PIP)

22

Priority Inheritance Protocol (PIP)

23

PIP Properties

24

• Push-through blocking
– A medium-priority task is blocked by a low-priority task that has inherited a

higher priority
– It can happen only if a critical section is accessed both by a task with lower

priority and by a task with higher priority
– Necessary to avoid unbounded priority inversion

• Transitive inheritance
– Can happen only in the presence of nested CSs

• Blocking time upper bound
– A task can be blocked for at most the duration of α critical sections, where α is

min(𝑙𝑙, 𝑠𝑠)
• 𝑙𝑙 is the number of lower-priority tasks that can block the task
• 𝑠𝑠 is the number of distinct semaphores that can block the task

PIP Issue: Chained Blocking

25

In the worst case, a high priority task may be blocked once by each of the lower priority task

PIP Issue: Deadlock

26

PIP does not prevent deadlock

Transitivity for PIP

27

Transitivity is needed

28

PIP Implementation

29

• Implementation is transparent
– It does require changes in the kernel but not in the

application or in the kernel API
• Required changes in the data structure

– Each thread must store its nominal and active priority
– Inheritance: Each mutex keeps track of the thread holding the

mutex
– Transitivity: Each thread keeps track of the mutex in which it is

blocked

PIP Implementation

30

• Mutex lock
– If Mutex is free:

• The mutex becomes locked
• The mutex keeps track of the thread locking the mutex.

– If Mutex is locked:
• The task calling the lock keeps track of the blocking mutex and it

blocks.
• The priority of the thread locking the mutex is changed to the priority

of the task calling the lock.
• If the task owning the mutex is blocked on another thread, the

transitivity rule is applied.
• The ready task with the highest priority is executed.

PIP Implementation

31

• Mutex unlock
– If no thread is blocked on the Mutex, then the mutex is simply unlocked.
– If one or more threads are blocked on the Mutex:

• The highest-priority thread blocked on the Mutex is awakened.
• It is stored as owner of the Mutex.
• The priority of the thread unlocking the Mutex is updated.

Resource Access Protocols Summary

32

• Each protocol has advantages and disadvantages
• There are other protocols
• Most RTOS implement PIP

Schedulability Analysis with Dependencies

33

• Recall the schedulability test and hyperbolic test for 𝑛𝑛 tasks under RM

�
𝑖𝑖=1

𝑛𝑛
𝐶𝐶𝑖𝑖
𝑇𝑇𝑖𝑖
≤ n(2

1
𝑛𝑛 − 1)

�
𝑖𝑖=1

𝑛𝑛

𝑈𝑈𝑖𝑖 + 1 ≤ 2

• With dependent tasks, we may compute an upper bound 𝐵𝐵𝑖𝑖 for the
blocking time of each task

– Depending on the Resource Access Protocol
• Schedulability tests may be extended to include this upper bound

– Inflate the computation time 𝐶𝐶𝑖𝑖 by the blocking time 𝐵𝐵𝑖𝑖
– Blocking times are computed under worst-case scenarios for each task
– Worst-case scenarios cannot happen simultaneously for each task

Schedulability Analysis with Dependencies

34

Rationale for extending schedulability analysis with blocking times
– In the worst case, each task can be blocked for the sum of durations of

critical section of lower-priority tasks – only once.
– A task cannot be blocked by another task with higher priority

∀𝑖𝑖 = 1, … ,𝑛𝑛 �
ℎ: 𝑃𝑃ℎ>𝑃𝑃𝑖𝑖

𝐶𝐶ℎ
𝑇𝑇ℎ

+
𝐶𝐶𝑖𝑖 + 𝐵𝐵𝑖𝑖
𝑇𝑇𝑖𝑖

≤ i(2
1
𝑖𝑖 − 1)

∀𝑖𝑖 = 1, … ,𝑛𝑛 �
ℎ: 𝑃𝑃ℎ>𝑃𝑃𝑖𝑖

𝐶𝐶ℎ
𝑇𝑇ℎ

+ 1
𝐶𝐶𝑖𝑖 + 𝐵𝐵𝑖𝑖
𝑇𝑇𝑖𝑖

+ 1 ≤ 2

Mutex vs Semaphore

35

• Mutexes are often called binary semaphores
• But mutexes are NOT like semaphores
• Semaphores implement a mechanism for producer-consumer scenarios

– The task that acquires the semaphore is often not the same as the one that releases the
semaphore

– Releasing a semaphore from an ISR context is allowed

• Mutexes implement a mechanism for exclusive access to a critical
section

– The task that locks and unlocks the mutex is the same
– Accessing a mutex from an ISR context is not allowed
– Mutexes are recursive/reentrant while semaphores are not
– Mutexes implement a Resource Access Protocol (like PIP) while semaphores do not

• Implementation of semaphores and mutexes is different
– Do NOT use a binary semaphore as a mutex !

References

36

• The Little Book of Semaphores, A. B. Downey
(https://greenteapress.com/semaphores/LittleBookOfSemaphores.pdf)

• Hard Real-Time Computing Systems, chapter 7, G.C. Buttazzo
(https://embreal.isc.heia-fr.ch/documentation/assets/literature/Hard%20Real-
Time%20Computing%20Systems.pdf)

https://greenteapress.com/semaphores/LittleBookOfSemaphores.pdf
https://embreal.isc.heia-fr.ch/documentation/assets/literature/Hard%20Real-Time%20Computing%20Systems.pdf

	Slide Number 1
	Recall: Our Mission
	Recall: Our mission
	Dependent Tasks
	What is the concern?
	Priority Inversion
	Blocking of higher priority tasks
	Unlimited blocking time (priority inversion)
	Solutions to Priority Inversion
	Resource Access Protocols
	Non-Preemptive Protocol (NPP)
	Non-Preemptive Protocol (NPP)
	Non-Preemptive Protocol (NPP)
	Non-Preemptive Protocol (NPP)
	Highest Locker’s Priority Protocol
	Highest Locker Priority Protocol (HLP)
	Highest Locker Priority Protocol (HLP)
	No deadlock with HLP
	No chained blocking with HLP
	Priority Inheritance Protocol (PIP)
	Priority Inheritance Protocol (PIP)
	Priority Inheritance Protocol (PIP)
	Priority Inheritance Protocol (PIP)
	PIP Properties
	PIP Issue: Chained Blocking
	PIP Issue: Deadlock
	Transitivity for PIP
	Transitivity is needed
	PIP Implementation
	PIP Implementation
	PIP Implementation
	Resource Access Protocols Summary
	Schedulability Analysis with Dependencies
	Schedulability Analysis with Dependencies
	Mutex vs Semaphore
	References

