
MA_EmbReal
Introduction
Version: 1.2

Serge Ayer – Luca Haab | 18.02.2025 | Cours MSE

Some administrative matters

2

• Lecture schedule

– 11h15-12h00 + 12h05-12h50 + 12h55-13h40

• Resources

– Site: https://embreal.isc.heia-fr.ch

– Development kit + various software

• Project

– Along the semester, you must deliver the source code of a project in 3 runs.

– Working in team of 2 students.

– The project is evaluated after each phase.

– The total number of points for the project is 100 pts (30/30/40)

– The grade is calculated as (points/100 * 5 + 1)

• Course grade

– The project/oral exam grade is 30%/70% of the course grade.

• Entire content available on the lecture website

• Lecture

– Content delivered on slides

• Codelabs

– Guided, hands-on coding

– Some parts may be hidden at first, with solution made available after two weeks

• Exercises

– Addressing specific problems

– Solutions made available after a few weeks

• Project

– To be implemented based on codelabs and exercises

– Implemented in 3 phases, delivered on GitHub with possible issues to be fixed in each phase

Course content

3

Course Teams’ instance

4

ab1x3yw

A few Questions to You

https://app.wooclap.com/EMBREAL0

5

https://app.wooclap.com/EMBREAL0?from=instruction-slide

What does real-time mean?

6

Deadline

Correct behavior Within expected time

Real-time System Applications

7

Typically

- run on systems embedded

into the system to be

controlled

- are mostly implemented on
embedded systems

Embedded
System

Embedded Systems – Different Views

8

Embedded System

Software

Hardware

Output to
Environment

User Interface Link to
Other Systems

Input from
Environment

Functionality: microscopic

Embedded
System

Device: macroscopic

• Developing systems with time constraints !=

developing fast systems

– Assembly

– Low-level drivers

– Manipulating task and interrupt priorities

• Very empirical and not the proper way
– Tedious coding and difficult to understand

– Costly and difficult

– Challenging verification

– Unpredictable !

• Cause of a high percentage of accidents
– Famous example: Ariane 5 Disaster (as silly as an overflow causing for $370m damage)

– Pictures taken by Phrd - Own work, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=6376804 and By Deadpan -
Own work, Public Domain, https://commons.wikimedia.org/w/index.php?curid=6383059 and https://news.mit.edu/2015/integer-
overflow-debugger-outperforms-predecessors-0324

How to develop real-time systems

9

https://www.bugsnag.com/blog/bug-day-ariane-5-disaster
https://commons.wikimedia.org/w/index.php?curid=6383059

Some famous laws and rules on real-time

10

• Murphy's General Law
"If something can go wrong, it will go wrong."

• Naeser’s Law
"One can make something bomb-proof, not jinx-proof."

• Green’s Law
"If a system is designed to be tolerant to a set of faults, there will always exist

an idiot so skilled to cause a non-tolerated fault."

• Johnson’s First Law
"If a system stops working, it will do it at the worst possible time."

How to develop real-time systems

11

• Fast computing systems == minimize the average response time or

maximize throughput

• Real-time computing systems == meet timing requirements of each task
– Even the shortest average response time cannot guarantee the individual timing

requirements

– A methodology is required for making sure that time requirements are met

– The keyword is: Predictability

• In real-time systems tasks are characterized by a deadline
– A deadline is the latest time at which the execution of a task shall be completed

– Producing a correct computation result after the deadline is wrong !

Classification of real-time tasks

12

• A real-time system may consist of tasks with different timing constraints

• Timing constraints are categorized as:

Tasks with different timing constraints

13

• Hard real-time:
– Detection of critical conditions

– Control of critical system components

– Action that tightly interact with the environment

– Sensing of critical data

• Firm real-time:

– Multi-media/video/audio

– Sensory data transmission

• Soft real-time:
– Often related to interaction with user

• Timeliness
– Kernel mechanisms for time

management including a real-time
clock

• Predictability
– Timing requirements must be analyzed

and guaranteed

– Make sure that possible delays are
known and bounded

• Efficiency
– Efficient management of the limited

available resources

• Robustness
– Load / overload must also be

considered and managed

• Fault tolerance
– Behavior shall also be predictable in

case of faults

– Consider also hardware redundancy

• Maintainability
– Built with modularity and certified

components

Needs for programming real-time systems

14

Achieving predictability

15

• Guarantee that timing constraints will be met

• Shall be analyzed and guaranteed offline

• But also depends on many factors such as

– Hardware: CPU and access to memory

– Kernel (scheduling, synchronization mechanisms, interrupt handling, etc.)

• The above influences
– Worst-case execution times (WCETs) of tasks

– Possible delays in the scheduling of tasks

• Hardware, kernels, programming languages to be designed for predictability

Options for Building Real-time Embedded Systems
D

e
d
ic

a
te

d

H
a
rd

w
a
re

S
o
ft

w
a
re

 R
u
n
n
in

g
 o

n
G

e
n
e
ri

c
 H

a
rd

w
a
re

Implementation Design
Cost

Unit
Cost

Upgrades
& Bug Fixes

Size Weight Power System
Speed

Discrete logic low mid hard large high ? very fast

ASIC high ($500K/
mask set)

very low hard tiny – 1 die very low low extremely fast

Programmable logic –
FPGA, PLD

low to mid mid easy small low medium to high very fast

Microprocessor + memory
+ peripherals

low to mid mid easy small to medium low to moderate medium moderate

Microcontroller (int.

memory & peripherals)

low mid to low easy small low medium slow to

moderate

Embedded PC low high sy medium moderate to high medium to high fast

Microcontroller based embedded system

Example of Embedded System: Bike Computer

Input:
Wheel rotation
Mode key

Output:
Display speed and
distance

Functions:

- Speed measurement

- Distance measurement

Constraints:

- Size

- Cost

- Power and energy

- Weight

Inputs:

- Wheel rotation indicator

- Mode key

Output:

- Liquid crystal display

Use low-performance
microcontroller:

- 9-bit, 10 MIPS

Example of Embedded System (II): Car Combustion Engine Control Unit

Functions:

- Fuel injection

- Air intake setting

- Spark timing

- Exhaust gas circulation

- Electronic throttle
control

- Knock control

Constraints:

- Reliability in harsh
environment

- Cost

- Size

Inputs and outputs:

- Discrete sensors and
actuators

- Network interface to
rest of car

- Injectors

Use high-performance
microcontroller:

- E.g. 32-bit, 3 MB flash
memory, 50-300 MHz

• Greater performance and

efficiency

– Software makes it possible to

provide sophisticated control

• Lower costs for mixed signal-

processing systems

– Less expensive components can

be used

– Overall costs reduced

(manufacturing, operating and

maintenance)

• More features

– May not be possible or practical

with other approaches (aka

extensibility)

• Better dependability

– Adaptive system which can

compensate for failures

– Better diagnostics to improve

repair time

Benefits of Microcontroller-based Embedded Systems

Embedded Systems and OS

20

• Should we use an OS for programming

embedded systems?

• An OS provides an abstraction of the Hardware
– Hardware is detailed and specific to every manufacturer

– Manipulating hardware requires not only programming
knowledge, but also understanding of the hardware.

– Should a programmer have to care about the details of
each hardware?

– She/he can be more productive by using an abstraction

layer

ARM FuSa RTS

21

• Arm® FuSa RTS is a set of software components qualified for use in safety-

critical applications
– Includes Arm® FuSa RTX OS

– Includes processor abstraction layers

– Includes verified C library and compiler for Cortex-M processors

• Arm® FuSa RTS is certified for different safety standards (automotive,

industrial, railway, medical)

• It supports and utilizes features of the Cortex-M0/M3/M4/M7 cores
– We will use a Cortex-M4 based STM platform, enabled for use with Arm® FuSa RTS

https://www.st.com/en/evaluation-tools/b-l475e-iot01a.html?icmp=tt5071_gl_bn_apr2017

ARM FuSa RTS

22

• Arm® FuSa RTS includes the following components
– FuSa RTX RTOS: deterministic real-time operating system

– FuSa Event Recorder: for collecting execution statistics

– FuSa CMSIS-Core: independent software interface to processor

– FuSa C library: subset of the C library, certified for safety-critical applications

• FuSa RTX RTOS

– Qualified for safety-critical applications

– Based on RTX RTOS

– Multi-tasking, priority-based, preemptive scheduling

– Written in C99 with MISRA C:2012 guidelines applied

– Small memory footprint

– Includes a tick-less operation mode for low power mode

ARM FuSa RTX RTOS

23

• Reliability
– Time-deterministic interrupt execution

• Safety
– Separate stacks for RTOS and threads

– Stack overflow checking

– Runtime check of kernel objects

• Memory management

– Memory pools for avoiding memory fragmentation

– Static memory allocation for kernel objects

• RTOS-aware debugging
– RTOS events recording

– Stack usage

– Memory usage of RTX objects

– Thread statistics

	Slide 1
	Slide 2: Some administrative matters
	Slide 3: Course content
	Slide 4: Course Teams’ instance
	Slide 5: A few Questions to You
	Slide 6: What does real-time mean?
	Slide 7: Real-time System Applications
	Slide 8: Embedded Systems – Different Views
	Slide 9: How to develop real-time systems
	Slide 10: Some famous laws and rules on real-time
	Slide 11: How to develop real-time systems
	Slide 12: Classification of real-time tasks
	Slide 13: Tasks with different timing constraints
	Slide 14: Needs for programming real-time systems
	Slide 15: Achieving predictability
	Slide 16: Options for Building Real-time Embedded Systems
	Slide 17: Example of Embedded System: Bike Computer
	Slide 18: Example of Embedded System (II): Car Combustion Engine Control Unit
	Slide 19: Benefits of Microcontroller-based Embedded Systems
	Slide 20: Embedded Systems and OS
	Slide 21: ARM FuSa RTS
	Slide 22: ARM FuSa RTS
	Slide 23: ARM FuSa RTX RTOS

