
MA_EmbReal
Robust Development Methodologies II
Version: 1.2

Serge Ayer – Luca Haab | 21.03.2023 | Cours MSE

Looking at the
example, which option
is best in your
opinion?

Hint: the programming language is irrelevant for the
response

SW Quality: what is it?

2

Source: https://gist.githubusercontent.com/annaazzam/066077b3a82eb5a035c256134540e45c/raw/ef59982f9b2d8b8582985145978b94cc47d9a579/code_complexity.js

SW Quality: ISO 25010

3

Source: https://nocomplexity.com/wp-content/uploads/2016/08/ISO-25010-QualityTree.png

Ensure as many aspects as possible

4

Continuous Checking

5

Recall: MISRA Goals

6

Staff training

Style guide
enforcement

Metrics
measurements

Tool
management

Run-time
behaviour

• It is very important to have SW
Quality Metrics as they:

– Support decision making
– Improve estimations
– Increase visibility & code quality

• But…
– May result in unintended effects

(think of a case where “the more code, the
higher the salary” – what would happen?)

SW Quality: measure != KPI

7

• #Files / Classes
• #includes
• Total Lines of code

(LoC)
• LoC per file
• LoC per method

SW Quality: KISS -> Volume

8

Complexity: the enemy

9

Complex systems are harder to test
and therefore are more likely to have
untested portions.

Complex systems have more lines of code
and therefore security bugs

Complex systems have more
interactions and therefore more
security bugs

Complex systems are harder to design,
implement, configure and use securely

Complex systems are harder for users to
understand

Source: Software Quality Metrics to Identify Risk - Tom McCabe

Essential vs Accidental Complexity

10

Essential complexity
Unavoidable complexity that crops up because
of conscious decisions made in the
development process.

Accidental complexity
Unintentional complexity that comes from
sloppy coding or poor decision-making in the
development process.

“Cyclomatic complexity is a
measure of the logical complexity of
a module and the minimum effort
necessary to qualify a module.

Cyclomatic is the number of
linearly independent paths and,
consequently, the minimum
number of paths that one should
(theoretically) test.”

Thomas McCabe Jr.

SW Quality: Cyclomatic Complexity

11

Cyclomatic Complexity
= E - N + 2*P
Where:
E: Edges
N: Nodes
P: Nodes with exit points

Alternatively: CC = D + 1
(D: decision points in control flow)

SW Quality: Cyclomatic Complexity

12

Node

Edge

• N: 6
• E: 6
• P: 1

ÞCC = 6 – 6 + 2 * 1 = 2

Þ Or D = 1 + 1

SW Quality: Cyclomatic Complexity

13

2

3

4

5 7

8
Number represents code line above

SW Quality: Cyclomatic Complexity

14

1

2

3

SW Quality: Cyclomatic Complexity

15

2a

1

2b

3

2c

4

i = 0

i < 5

i++

// end of for

SW Quality: Cyclomatic Complexity

16

2

1

3

5 // end of while

4

SW Quality: Cyclomatic Complexity

17

Complexity
Number

Meaning Reliability Risk Likelihood of
bugs*

1-10 Structured and well written code
High Testability
Cost and Effort is low

Little risk 5%

10-20 Complex Code
Medium Testability
Cost and Effort is medium

Moderate 10%

20-40 Very complex Code
Low Testability
Cost and Effort are high

High 30%

>40 Not at all testable
Very high Cost and Effort

VERY HIGH 40%

*: introducing bugs while modifying (even slightly) the code

So:
1. Prefer Smaller Functions
2. Avoid Flag Arguments in

Functions
3. Reduce the Number of

Decision Points
4. Get Rid of Duplicated Code
5. Remove Obsolete Code
6. Don't Reinvent the Wheel

(aka as “Use patterns”)

SW Quality: Cyclomatic Complexity

18

SW Quality: Cyclomatic Complexity
Word of caution

19

SW Quality: Cyclomatic Complexity

20

Addresses solely control
flow – not other
dimensions (e.g. data)

Cognitive Complexity != Cyclomatic Complexity

Check Shepperd’s 1988 paper and for SonarSource Cognitive Complexity a comprehensive critique of Cyclomatic
Complexity

Results may differ slightly

Does not support latest
programming language
features

https://www.cs.du.edu/~snarayan/sada/teaching/COMP3705/lecture/p1/cycl-1.pdf
https://assets-eu-01.kc-usercontent.com/45f00125-6dea-0121-0efe-ce8937882537/e89714ed-2e5b-4119-9ff7-3ccdef359ee9/CognitiveComplexity.pdf

SW Quality: Entanglement

21

“Quantum entanglement [..] is a property of certain
states of a quantum system containing two or more
distinct objects, in which the information describing the
objects is inextricably linked such that performing a
measurement on one immediately alters properties of
the other, even when separated at arbitrary distances”
Source: https://en.wikipedia.org/wiki/Quantum_entanglement

Coupling

Cohesion

Rationale – in broad terms:
• rules to avoid dangers
• rules to enforce best

practices
• rules to ensure

consistency

SW Quality: Guidelines

22

Our style: https://google.github.io/styleguide/cppguide.html

More information: Style Guides and Rules, by author Shaindel Schwartz – chapter of “Software Engineering at Google” (ISBN: 9781492082798)

https://google.github.io/styleguide/cppguide.html

Rule 1: Comments should not duplicate the code.
Rule 2: Good comments do not excuse unclear

code.
Rule 3: If you can’t write a clear comment, there

may be a problem with the code.
Rule 4: Comments should dispel confusion, not

cause it.
Rule 5: Explain unidiomatic code in comments.
Rule 6: Provide links to the original source of

copied code.
Rule 7: Include links to external references

where they will be most helpful.
Rule 8: Add comments when fixing bugs.
Rule 9: Use comments to mark incomplete

implementations.

SW Quality: Comments

23

See more details under https://stackoverflow.blog/2021/12/23/best-practices-for-writing-code-comments/

SW Quality: One more thing

24

SW Quality: code peer review

25

Source: https://smartbear.com/learn/code-review/best-practices-for-peer-code-review/

1. Review fewer than 400 lines of code at a time
2. Inspection rates should under 500 LOC per hour
3. Do not review for more than 60 minutes at a

time
4. Set goals and capture metrics
5. Establish a process for fixing defects found
6. Foster a positive code review culture
7. Embrace the subconscious implications of peer

review
8. Practice lightweight code reviews
9. Use checklists

26

Want to know more?
Check out:
https://learn.microsoft.com/en-us/visualstudio/code-quality/code-metrics-maintainability-index-range-and-meaning?view=vs-2022
https://www.ecs.csun.edu/~rlingard/comp589/ColemanPaper.pdf
https://files.ifi.uzh.ch/rerg/amadeus/teaching/seminars/seminar_ws0203/Seminar_3.pdf
https://www.geeksforgeeks.org/software-engineering-coupling-and-cohesion/
https://nvlpubs.nist.gov/nistpubs/specialpublications/nist.sp.500-320.pdf
https://hehao98.github.io/files/2019-comment.pdf
http://www.mccabe.com/ppt/SoftwareQualityMetricsToIdentifyRisk.ppt

27

https://learn.microsoft.com/en-us/visualstudio/code-quality/code-metrics-maintainability-index-range-and-meaning?view=vs-2022
https://files.ifi.uzh.ch/rerg/amadeus/teaching/seminars/seminar_ws0203/Seminar_3.pdf
https://files.ifi.uzh.ch/rerg/amadeus/teaching/seminars/seminar_ws0203/Seminar_3.pdf
https://www.geeksforgeeks.org/software-engineering-coupling-and-cohesion/
https://nvlpubs.nist.gov/nistpubs/specialpublications/nist.sp.500-320.pdf
https://hehao98.github.io/files/2019-comment.pdf
http://www.mccabe.com/ppt/SoftwareQualityMetricsToIdentifyRisk.ppt

