
MA_EmbReal
Robust Patterns for Reliable Systems (I)
Version: 1.3

Serge Ayer – Luca Haab | 01.04.2025 | Cours MSE

Caution: this is a mere introduction

to this vast subject

Recall: Our Mission

2

Recall: Our mission

3

• Program with a mix of periodic / aperiodic tasks
– Address first scheduling of periodic tasks

– Add aperiodic tasks

– Add dependencies among tasks

• Demonstrate that a schedule is feasible given a set of tasks with their
constraints and dependencies

– Use known bounds and elaborate a feasible schedule

– Compute bounds for blocking times

• Use the appropriate scheduling algorithm in simulation and practice

• Implement a system that meets timing constraints
– With functional safety concepts

– With timing constraints watchdogs

• Low SIL (1-2) are

used in non life-

threatening systems

• High SIL (3-4) are

demanded in life-

critical systems

SIL Levels : A simplified recap

4

When a fault does happen…

5

Unacceptable

Unacceptable

Crash

Degraded
Operation

Recovery

Malfunction

May be acceptable

May be acceptable

Photos by Unknown Authors and licensed under CC BY-NC

Ideal

https://creativecommons.org/licenses/by-nc/3.0/

A Few Terms: Fail-???

6

Fail-safe

The system goes into safe mode when a failure occurs

Fail-silent

the system recognizes that it is receiving the wrong information due to a
fault, so the ongoing operation moves to degraded mode (or, often,
stops working entirely)

Fail-operational (also known as fault-tolerant)

a failure in one component does not stop the whole system from working
correctly, the system reconfigures itself to compensate for the fault

High-dependability

this is advanced failure prediction

A Few Terms: an example

7

Cyber-
physical
System

Cyber-
physical
System

SIL scope

• Have multiple,

different SIL without

separation

• Confuse fault

detection &

availability

Word of caution (=> Antipattern)

8

A
cq

u
is

it
io

n

P
ro

ce
ss

in
g

O
u

tp
u

t

• Advantages

– Cheapest option

– Simple

– Suitable for SIL << MTBF

• Disadvantage

– All SW needs to be according to

highest SIL

– Adapted to low SIL only

Simplest System Pattern: 1-Channel

9

ActuatorData
Source

Primary

HW:
• 1 CPU

SW:
• -

• Advantages

– Cheapest option

– Simple

– Suitable for SIL < MTBF

• Disadvantage

– All SW needs to be according to

highest SIL

– Adapted to low SIL only

– BIST covers HW failure rate

detection – but still not SIL 3/4

ready

Pattern: 1-Channel + BIST

10

ActuatorData
Source

Primary

HW:
• 1 CPU

SW:
• Self-test libraries

BIST : Built-In Self Test

BIST

• Advantages

– Simplest HW/SW SIL pattern

– Relatively cheap HW

• Disadvantage

– “Separation” needs to be proven

– Adapted to low SIL (1-2) only

– May be complex when 2 sides

need to share information (->

partitioning shall not be made

weaker)

Pattern: 1-Channel + SW Isolation

11

ActuatorData
Source

Primary

HW:
• 1 CPU

SW:
• Low/Higher SIL

(1/2) partitioning

Higher SILLow SIL

• Advantages

– Simplest high-availability pattern

– Failover for simple failure modes

• Disadvantage

– All SW needs to be according to

highest SIL

– Requires standby monitoring

• Critical note:

– Secondary system does not

improve SIL but availability

Pattern: 2-Channel Failover

12

Primary

HW:
• 2 CPU

SW:
• -

Secondary

Both CPUs running same Low SIL
SW and running same computation

Both CPUs running same Low SIL
SW and running same computation

Fail-over upon fault

Fail-Operational

• Advantages

– Simplest high-SIL pattern

• Disadvantage

– All SW needs to be according to

highest SIL (thus $$$$ SW)

– Fails silently…

Pattern: 2-Channel

13

Primary

HW:
• 2 CPU

SW:
• -

Secondary

Both CPUs running same High SIL
SW and running same computation

Both CPUs running same High SIL
SW and running same computation

Continuous
Cross-check

Fail-Silent

• Advantages

– Simplest high-SIL pattern

– Fail situation handled with

Secondary System

• Disadvantage

– All SW needs to be according to

highest SIL (thus $$$$ SW)

– Requires Secondary System to be

ready at “all times”

Pattern: Dual 2-Channel

14

Primary

HW:
• 4 CPU

SW:
• -

Secondary

Both CPUs running same High SIL SW
and running same computation

Both CPUs running same High SIL SW
and running same computation

Continuos
Cross-check

Fail-Operational
Primary

Secondary

Both CPUs running same High SIL SW
and running same computation

Both CPUs running same High SIL SW
and running same computation

Continuos
Cross-check

Fail-over
upon
fault

• Advantages

– Gives a somewhat low-cost

solution for checking, qualitatively,

the Primary System

• Disadvantage

– Only for Low SIL

– Checker needs self-testing

– Increasing the quality of the Sanity

Checker increases the price

• Note

– This pattern may be seen on a

single CPU using SW isolation

Pattern: Sanity Check

15

Primary

HW:
• 2 CPUs

(though not
the same)

SW:
• -

Sanity Checker

Actuator - CPU running Low SIL SW

Sanity - CPU monitoring the work
of the Actuator Channel

Checks validity of (some) outputs
and triggers a shutdown/reset
should there be an issue

• Advantages

– Very simple variant of Sanity

Check pattern

– Cheap, simple HW

• Disadvantage

– All SW needs to be according to

highest SIL

– Adapted to low SIL only

– Limited coverage (“all-or-nothing”)

Pattern: 1-Channel + Watchdog

16

ActuatorData
Source

Primary

HW:
• 1 CPU
• 1 WD

SW:
• -

Watchdog

• Advantages

– High-SIL pattern with high-

availability

– Voter HW may be inexpensive

– Faulty Channel “outvoted”

• Disadvantage

– All SW needs to be according to

highest SIL

– Voter is a single point of failure

– Not the cheapest option

Pattern: Triple Modular Redundancy

17

Primary

HW:
• 3 CPU
• 1 Voter HW

SW:
• -

Secondary

All CPUs running same High SIL SW
and running same computation

All CPUs running same High SIL SW
and running same computation

Tertiary

All CPUs running same High SIL SW
and running same computation

Voter

Majority Voter

• Let’s put this into

practice (embreal homepage -

>Codelabs->Robust Design Patterns –

Part 1)

Pattern: 1-Channel + Watchdog

18

https://embreal.isc.heia-fr.ch/codelabs/robust-patterns-part1/
https://embreal.isc.heia-fr.ch/codelabs/robust-patterns-part1/
https://embreal.isc.heia-fr.ch/codelabs/robust-patterns-part1/

Defense Programming

19

• Is an attitude

• Whose aim is

– detect potential

abnormalities

proactively

– make the SW

predictable

– improve quality

Defense Programming

20

• Let’s put this into

practice (embreal homepage -

>Exercices->Robust Design Patterns –

Part 1)

Defense Programming in Practice

21

https://embreal.isc.heia-fr.ch/exercices/robust-patterns-part1/
https://embreal.isc.heia-fr.ch/exercices/robust-patterns-part1/
https://embreal.isc.heia-fr.ch/exercices/robust-patterns-part1/

References

22

• Systematic pattern approach for safety and security co-engineering in the automotive domain (https://api-

depositonce.tu-berlin.de/server/api/core/bitstreams/eb16c756-d7fa-46b1-a96d-3c2c854a3063/content)

• Design Patterns for Safety-Critical Embedded Systems (https://d-nb.info/1007034963/34)

• Red Hat Defensive Coding Guide (https://developers.redhat.com/articles/defensive-coding-guide)

• Defensive Programming - Friend or Foe? (https://interrupt.memfault.com/blog/defensive-and-offensive-

programming)

https://api-depositonce.tu-berlin.de/server/api/core/bitstreams/eb16c756-d7fa-46b1-a96d-3c2c854a3063/content
https://api-depositonce.tu-berlin.de/server/api/core/bitstreams/eb16c756-d7fa-46b1-a96d-3c2c854a3063/content
https://d-nb.info/1007034963/34
https://developers.redhat.com/articles/defensive-coding-guide
https://interrupt.memfault.com/blog/defensive-and-offensive-programming
https://interrupt.memfault.com/blog/defensive-and-offensive-programming

	Slide 1
	Slide 2: Recall: Our Mission
	Slide 3: Recall: Our mission
	Slide 4: SIL Levels : A simplified recap
	Slide 5: When a fault does happen…
	Slide 6: A Few Terms: Fail-???
	Slide 7: A Few Terms: an example
	Slide 8: Word of caution (=> Antipattern)
	Slide 9: Simplest System Pattern: 1-Channel
	Slide 10: Pattern: 1-Channel + BIST
	Slide 11: Pattern: 1-Channel + SW Isolation
	Slide 12: Pattern: 2-Channel Failover
	Slide 13: Pattern: 2-Channel
	Slide 14: Pattern: Dual 2-Channel
	Slide 15: Pattern: Sanity Check
	Slide 16: Pattern: 1-Channel + Watchdog
	Slide 17: Pattern: Triple Modular Redundancy
	Slide 18: Pattern: 1-Channel + Watchdog
	Slide 19: Defense Programming
	Slide 20: Defense Programming
	Slide 21: Defense Programming in Practice
	Slide 22: References

