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Recall: Our Mission
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Recall: Our mission
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• Program with a mix of periodic / aperiodic tasks
– Address first scheduling of periodic tasks
– Add aperiodic tasks
– Add dependencies among tasks

• Demonstrate that a schedule is feasible given a set of tasks with their 
constraints and dependencies

– Use known bounds and elaborate a feasible schedule
– Compute bounds for blocking times

• Use the appropriate scheduling algorithm in simulation and practice
• Implement a system that meets timing constraints

– With functional safety concepts
– With timing constraints watchdogs



• A gobbler is an application 
that consumes too many 
resources

• A safe system needs to 
guard against gobblers

Gobblers
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Isolation – Spatial / Temporal
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Memory (+ related Spatial Isolation)
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• Fragmentation
• Memory usage
• Overflows

Memory - Challenges
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• Global
– Statically allocated 

block of memory
– No distinction what is 

stored in the pool

• Specific
– Statically allocated 

block of memory
– Each type has its 

dedicated memory pool

Memory Fragmentation - Pools
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Stack – Memory usage
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• Watermarking

Implementation example: svcRtxThreadNew@https://github.com/ARM-software/CMSIS_5/blob/master/CMSIS/RTOS2/RTX/Source/rtx_thread.c

https://github.com/ARM-software/CMSIS_5/blob/master/CMSIS/RTOS2/RTX/Source/rtx_thread.c


Stack – Buffer overflow
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• Overflow Checking



• Application crashes
• Crashing neighbouring buffers
• Changing return address
• Modifying buffer contents
• …
• Depending on the executor 

rights, it may get  really 
interesting 😎

Stack – Buffer overflow
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• Let’s put this into 
practice: Leveraging-
stack-overflow (20’)

Stack – Buffer overflow
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https://embreal.isc.heia-fr.ch/exercises/robust-patterns-part2/
https://embreal.isc.heia-fr.ch/exercises/robust-patterns-part2/


Stack – Buffer Overflow
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• Overflow Checking

Unit

Memory

Protection

Proactive Reactive

• Identify whether 
stack violations have 
occurred

• Mark memory as non-
executable

• Use Address Space 
Layout Randomization 
(ASLR)



Tasks (+ related Temporal Isolation)
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• First thing first:
– Detect a fault 

happening
• Apply pattern(s)

– Watchdog – the 
simplest

Tasks - Monitoring
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• A task needs to 
refresh a watchdog

• A consequent action 
is triggered if not

• Note: multiple tasks with 
different cadences may 
undergo watchdog scrutiny

Monitoring Tasks - Watchdog
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Watchdog



• A feasible system, 
has a defined spare 
capacity

• Baseline to be set 
• At every version, 

baseline is checked
• Profiler 

Managing Capacity
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• Errors may go unnoticed…
• “Correctable” errors such as

– orphaned resources
– indices in data 
– inconsistent states
– …

• Likely lead to faults eventually
• Audit corrects errors and helps 

to make a system self-healing

Auditing
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It 
• Ensures that important logs 

survive restarts 
• Implemented in a non-volatile 

memory segment

It contains
• Error and warning logs (on & off)
• Logs of serious software problems 
• Service-affecting actions 

performed by support technicians 

Flight Recorder
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Putting all together
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• A failure does occur, 
so?
– What is the 

appropriate 
consequent action?

– Restart means 
reinitializing memory

Escalating Restarts
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Warm

Cold

Reload

Reboot

• First: (try to) do no harm
• Then: escalate until the 

issue is fixed

Escalating Restarts
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• Classify importance & 
dependencies

• Monitor execution
• Apply appropriate 

escalation

Examples: reincarnation server of Minix, Linux’s 
SystemD

Escalating Restarts
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Actuator 1

Sanity - Monitoring the work of the 
Actuator Channels

Actuator 2 Actuator 3

https://www.cs.vu.nl/~ast/Publications/Papers/asci-2006.pdf
https://en.wikipedia.org/wiki/Systemd
https://en.wikipedia.org/wiki/Systemd
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