
MA_EmbReal
Robust Patterns for Reliable Systems (II)
Version: 1.3

Serge Ayer – Luca Haab | 24.04.2023 | Cours MSE

Recall: Our Mission

2

Recall: Our mission

3

• Program with a mix of periodic / aperiodic tasks
– Address first scheduling of periodic tasks
– Add aperiodic tasks
– Add dependencies among tasks

• Demonstrate that a schedule is feasible given a set of tasks with their
constraints and dependencies

– Use known bounds and elaborate a feasible schedule
– Compute bounds for blocking times

• Use the appropriate scheduling algorithm in simulation and practice
• Implement a system that meets timing constraints

– With functional safety concepts
– With timing constraints watchdogs

• A gobbler is an application
that consumes too many
resources

• A safe system needs to
guard against gobblers

Gobblers

4 Pacman: https://commons.wikimedia.org/wiki/File:Pacman_HD.png

Isolation – Spatial / Temporal

5

Memory (+ related Spatial Isolation)

6

• Fragmentation
• Memory usage
• Overflows

Memory - Challenges

7

• Global
– Statically allocated

block of memory
– No distinction what is

stored in the pool

• Specific
– Statically allocated

block of memory
– Each type has its

dedicated memory pool

Memory Fragmentation - Pools

8

Stack – Memory usage

9

• Watermarking

Implementation example: svcRtxThreadNew@https://github.com/ARM-software/CMSIS_5/blob/master/CMSIS/RTOS2/RTX/Source/rtx_thread.c

https://github.com/ARM-software/CMSIS_5/blob/master/CMSIS/RTOS2/RTX/Source/rtx_thread.c

Stack – Buffer overflow

10

• Overflow Checking

• Application crashes
• Crashing neighbouring buffers
• Changing return address
• Modifying buffer contents
• …
• Depending on the executor

rights, it may get really
interesting 😎

Stack – Buffer overflow

11

• Let’s put this into
practice: Leveraging-
stack-overflow (20’)

Stack – Buffer overflow

12

https://embreal.isc.heia-fr.ch/exercises/robust-patterns-part2/
https://embreal.isc.heia-fr.ch/exercises/robust-patterns-part2/

Stack – Buffer Overflow

13

• Overflow Checking

Unit

Memory

Protection

Proactive Reactive

• Identify whether
stack violations have
occurred

• Mark memory as non-
executable

• Use Address Space
Layout Randomization
(ASLR)

Tasks (+ related Temporal Isolation)

14

• First thing first:
– Detect a fault

happening
• Apply pattern(s)

– Watchdog – the
simplest

Tasks - Monitoring

15

• A task needs to
refresh a watchdog

• A consequent action
is triggered if not

• Note: multiple tasks with
different cadences may
undergo watchdog scrutiny

Monitoring Tasks - Watchdog

16

Watchdog

• A feasible system,
has a defined spare
capacity

• Baseline to be set
• At every version,

baseline is checked
• Profiler

Managing Capacity

17

• Errors may go unnoticed…
• “Correctable” errors such as

– orphaned resources
– indices in data
– inconsistent states
– …

• Likely lead to faults eventually
• Audit corrects errors and helps

to make a system self-healing

Auditing

18

It
• Ensures that important logs

survive restarts
• Implemented in a non-volatile

memory segment

It contains
• Error and warning logs (on & off)
• Logs of serious software problems
• Service-affecting actions

performed by support technicians

Flight Recorder

19

Putting all together

20

• A failure does occur,
so?
– What is the

appropriate
consequent action?

– Restart means
reinitializing memory

Escalating Restarts

21

Warm

Cold

Reload

Reboot

• First: (try to) do no harm
• Then: escalate until the

issue is fixed

Escalating Restarts

22

• Classify importance &
dependencies

• Monitor execution
• Apply appropriate

escalation

Examples: reincarnation server of Minix, Linux’s
SystemD

Escalating Restarts

23

Actuator 1

Sanity - Monitoring the work of the
Actuator Channels

Actuator 2 Actuator 3

https://www.cs.vu.nl/~ast/Publications/Papers/asci-2006.pdf
https://en.wikipedia.org/wiki/Systemd
https://en.wikipedia.org/wiki/Systemd

References

24

• Robust Communications Software - Extreme Availability, Reliability and Scalability for Carrier-Grade Systems,
Greg Utas (ISBN 0-470-85434-0)

• Patterns for Fault Tolerant Software, Robert S. Hanmer (ISBN: 978-1-118-35154-3)
• The Architecture of a Reliable Operating System (https://www.cs.vu.nl/~ast/Publications/Papers/asci-2006.pdf)
• On Spatial Isolation for Mixed Criticality, Embedded Systems (https://www-users.york.ac.uk/~rd17/wmc2014/3.pdf)
• Introduction to memory protection unit on STM32 MCUs

(https://www.st.com/resource/en/application_note/an4838-introduction-to-memory-protection-unit-management-on-
stm32-mcus-stmicroelectronics.pdf)

https://www.cs.vu.nl/~ast/Publications/Papers/asci-2006.pdf
https://www-users.york.ac.uk/~rd17/wmc2014/3.pdf
https://www.st.com/resource/en/application_note/an4838-introduction-to-memory-protection-unit-management-on-stm32-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/application_note/an4838-introduction-to-memory-protection-unit-management-on-stm32-mcus-stmicroelectronics.pdf

