
MA_EmbReal
Scheduling Principles and Periodic Tasks
Version: 1.3

Serge Ayer – Luca Haab | 10.03.2025 | Cours MSE

Our mission

2

• Program with a mix of periodic / aperiodic tasks
– Address first scheduling of periodic tasks
– Add aperiodic tasks
– Add dependencies among tasks

• Demonstrate that a schedule is feasible given a set of tasks with their
constraints and dependencies

– Use known bounds and elaborate a feasible schedule
– Compute bounds for blocking times

• Use the appropriate scheduling algorithm in simulation and practice
• Implement a system that meets timing constraints

– With functional safety concepts
– With timing constraints watchdogs

Important concepts

3

Task

Scheduling
algorithm

Scheduling

Preemption

Feasible
schedule

Schedulable

Task
constraintsShared

resources

The Scheduling Problem

4

• Given
– a set of processors,
– a set of tasks,

• with their precedence relations
• with their timing constraints

– a set of resources
• Assign the processors and resources to tasks in order to

complete all tasks under the specified constraints.

Task

Scheduling
algorithm

Task
constraints

Schedulable

Shared
resources

Scheduling of tasks

5

A schedule example

6

Task constraints

7

Task 1

Task 2

Task 3

How are timing constraints specified?

8

Periodic vs aperiodic tasks

9

Periodic Tasks: Assumptions

10

• Algorithms are elaborated assuming a number of constraints
– Tasks’ periods 𝑇𝑇𝑖𝑖 are constant for each task
– The worst-case execution time of each task 𝐶𝐶𝑖𝑖 is known and fixed
– The deadline is the same as the period, 𝑇𝑇𝑖𝑖 = 𝐷𝐷𝑖𝑖
– Tasks are independent from each other

• Also, for the sake of simplicity
– No overhead in the kernel (e.g. context switch)
– No task suspends itself

Periodic Tasks: Definitions and Concepts

11

• As a consequence, a task 𝑖𝑖 is entirely characterized by
– Its period 𝑇𝑇𝑖𝑖
– Its worst-case computation time 𝐶𝐶𝑖𝑖
– Its phase 𝜙𝜙𝑖𝑖 or release time of its first instance

• The schedule repeats itself at the Hyperperiod / Major Cycle interval
hyperperiod = 𝑙𝑙𝑙𝑙𝑙𝑙(𝑇𝑇1, … ,𝑇𝑇𝑛𝑛)

• Schedulability depends on the computational load
– 𝑈𝑈 = ∑𝑖𝑖=1𝑛𝑛 𝐶𝐶𝑖𝑖

𝑇𝑇𝑖𝑖
(processor utilization factor)

– 𝑈𝑈𝑢𝑢𝑢𝑢: upper bound of 𝑈𝑈 for schedulability
• for a task set AND a scheduling algorithm

– For schedulability, 𝑈𝑈 cannot be > 1 !

Periodic Tasks: Scheduling Algorithms

12

• A scheduling algorithm must guarantee that
– each task is activated at the proper rate
– each task is completed within its deadline
– If T == D, then each task should execute once within its period

• Four basic most-known algorithms:
– Time-Triggered Cyclic Executive (TTCE)
– Rate Monotonic (RM)
– Earliest Deadline First (EDF)
– Deadline Monotonic (DM)

Time-Triggered Cyclic Executive

13

• Offline scheduling, without context switch
• Very often used for handling periodic tasks
• Method:

– See exercise exercise on timeline cyclic scheduling

• Pseudo-code:
main() { task_dispatcher() {
initialize schedule table execute all tasks for this minor cycle
setup timer (minor cycle) update minor cycle index
initialize minor cycle index = 0 }
suspend

}

https://embreal.isc.heia-fr.ch/exercises/scheduling-periodic/

Time-Triggered Cyclic Executive

14

• Advantages
– Very simple, does not even require an online scheduler
– No overhead for context switch
– Minimal jitter

• Disadvantages
– Very fragile to overloads (domino effect)
– Does not scale and adapt easily, even to minor changes
– Difficult to handle aperiodic tasks efficiently

Dynamic scheduling

15

• Rather than applying a static order of tasks, allow task scheduling to be
computed dynamically online:

– Based on importance (priority) or any other criteria (e.g. task deadline, duration
or creation time).

– This also simplifies the creation of tasks with arbitrary rates.
• Scheduling based on task importance

– Prioritization means that less important tasks don’t delay more important ones.
• How often does the scheduler decide what to run?

– Coarse grain: after a task finishes. It is non preemptive or Run-To-Completion (RTC)
– Fine grain: at any time. It is preemptive – one task can preempt another less important task.

RTC: Task State and Scheduling Rules

16

• The Scheduler chooses among Ready
tasks for execution based on priority

• Events can change a task state
• Scheduling rules:

– If no task is ready, the scheduler sits in idle
state.

– If no task is running, the scheduler starts the
highest priority ready task, if any.

– Once started, a task runs until it completes
(no preemption).

– Completed tasks enter the waiting state until
released again

Ready

Running

Waiting

Task is released
(ready to run)

Task completes

Started as
highest
priority

ready task

Preemption: Task State and Scheduling Rules

17

• The Scheduler chooses among Ready
tasks for execution based on priority

• Scheduling rules:
– A task’s activities may lead it to waiting

(blocked)
– A waiting task never gets the CPU. It must

be signaled by an ISR or another task.
– Only the scheduler moves tasks between

ready and running

Ready

Running

Waiting

What the task needs
happens

(ready to run)

Task needs something
to happen

Started as
highest
priority

ready task

This isn’t
the highest

priority
task

anymore

Preemptive Scheduling Algorithms (Periodic Tasks)

18

• Accepted constraints for RM and EDF
– No resource sharing
– D = T, periods are fixed, worst-time execution times are fixed

• Rate Monotonic Scheduling
– Tasks with higher request rates/shorter periods have higher priorities.
– Fixed periods means fixed priorities.
– Is optimal among fixed-priority algorithms.

Preemptive Scheduling Algorithms (Periodic Tasks)

19

• Rate Monotonic Scheduling

– Schedulability test: U = ∑𝑖𝑖=1𝑛𝑛 𝐶𝐶𝑖𝑖
𝑇𝑇𝑖𝑖
≤ n(2

1
𝑛𝑛 − 1)

– Schedulability test (Hyperbolic bound): ∏𝑖𝑖=1
𝑛𝑛 𝑈𝑈𝑖𝑖 + 1 ≤ 2

– Schedulability test conditions are sufficient conditions, not mandatory
– The Hyperbolic bound is less pessimistic
– The upper bound may also be relaxed when tasks’ periods form harmonic subsets

• An set of harmonic tasks is a set where any task’s period is a multiple of all shorter periods
• Example: [𝑇𝑇1,𝑇𝑇2, 𝑇𝑇3, 𝑇𝑇4] = [1, 3, 6, 12]

• The schedulability test becomes U = ∑𝑖𝑖=1𝑛𝑛 𝐶𝐶𝑖𝑖
𝑇𝑇𝑖𝑖
≤ K(2

1
𝐾𝐾 − 1), where K is the number of task subsets

• If K=1, the upper bound becomes 1.0, representing full utilization

Preemptive Scheduling Algorithms (Periodic Tasks)

20

• Earliest Deadline First
– Tasks with earlier absolute deadlines will be executed at higher priorities.
– Priorities are dynamic since absolute deadlines of periodic tasks vary over time.
– Preemptive: the currently executed task is preempted whenever another periodic instance

with an earlier deadline becomes active.

– Schedulability test: U = ∑𝑖𝑖=1𝑛𝑛 𝐶𝐶𝑖𝑖
𝑇𝑇𝑖𝑖
≤ 1

• Deadline monotonic
– Both RM and EDF assume that the deadline is the end of the period

• A task instance can be executed anytime within its period
– Deadline monotonic is an extension of RM that releases this constraint
– Like RM, it uses fixed priorities and the priority is inversely proportional to the deadline

	Slide Number 1
	Our mission
	Important concepts
	The Scheduling Problem
	Scheduling of tasks
	A schedule example
	Task constraints
	How are timing constraints specified?
	Periodic vs aperiodic tasks
	Periodic Tasks: Assumptions
	Periodic Tasks: Definitions and Concepts
	Periodic Tasks: Scheduling Algorithms
	Time-Triggered Cyclic Executive
	Time-Triggered Cyclic Executive
	Dynamic scheduling
	RTC: Task State and Scheduling Rules
	Preemption: Task State and Scheduling Rules
	Preemptive Scheduling Algorithms (Periodic Tasks)
	Preemptive Scheduling Algorithms (Periodic Tasks)
	Preemptive Scheduling Algorithms (Periodic Tasks)

