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Our mission
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• Program with a mix of periodic / aperiodic tasks
– Address first scheduling of periodic tasks
– Add aperiodic tasks
– Add dependencies among tasks

• Demonstrate that a schedule is feasible given a set of tasks with their 
constraints and dependencies

– Use known bounds and elaborate a feasible schedule
– Compute bounds for blocking times

• Use the appropriate scheduling algorithm in simulation and practice
• Implement a system that meets timing constraints

– With functional safety concepts
– With timing constraints watchdogs



Important concepts
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The Scheduling Problem
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• Given 
– a set of processors, 
– a set of tasks, 

• with their precedence relations
• with their timing constraints

– a set of resources
• Assign the processors and resources to tasks in order to 

complete all tasks under the specified constraints.
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Scheduling of tasks
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A schedule example
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Task constraints
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How are timing constraints specified?
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Periodic vs aperiodic tasks
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Periodic Tasks: Assumptions
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• Algorithms are elaborated assuming a number of constraints
– Tasks’ periods 𝑇𝑇𝑖𝑖 are constant for each task
– The worst-case execution time of each task 𝐶𝐶𝑖𝑖 is known and fixed
– The deadline is the same as the period, 𝑇𝑇𝑖𝑖 = 𝐷𝐷𝑖𝑖
– Tasks are independent from each other

• Also, for the sake of simplicity
– No overhead in the kernel (e.g. context switch)
– No task suspends itself



Periodic Tasks: Definitions and Concepts
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• As a consequence, a task 𝑖𝑖 is entirely characterized by
– Its period 𝑇𝑇𝑖𝑖
– Its worst-case computation time 𝐶𝐶𝑖𝑖
– Its phase 𝜙𝜙𝑖𝑖 or release time of its first instance

• The schedule repeats itself at the Hyperperiod / Major Cycle interval
hyperperiod = 𝑙𝑙𝑙𝑙𝑙𝑙(𝑇𝑇1, … ,𝑇𝑇𝑛𝑛)

• Schedulability depends on the computational load
– 𝑈𝑈 = ∑𝑖𝑖=1𝑛𝑛 𝐶𝐶𝑖𝑖

𝑇𝑇𝑖𝑖
(processor utilization factor)

– 𝑈𝑈𝑢𝑢𝑢𝑢: upper bound of 𝑈𝑈 for schedulability
• for a task set AND a scheduling algorithm

– For schedulability, 𝑈𝑈 cannot be > 1 !



Periodic Tasks: Scheduling Algorithms
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• A scheduling algorithm must guarantee that 
– each task is activated at the proper rate 
– each task is completed within its deadline
– If T == D, then each task should execute once within its period

• Four basic most-known algorithms:
– Time-Triggered Cyclic Executive (TTCE)
– Rate Monotonic (RM)
– Earliest Deadline First (EDF)
– Deadline Monotonic (DM)



Time-Triggered Cyclic Executive
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• Offline scheduling, without context switch
• Very often used for handling periodic tasks
• Method:

– See exercise exercise on timeline cyclic scheduling

• Pseudo-code:
main() {                                                task_dispatcher() {
initialize schedule table                        execute all tasks for this minor cycle              
setup timer (minor cycle)                     update minor cycle index
initialize minor cycle index = 0          }
suspend

}

https://embreal.isc.heia-fr.ch/exercises/scheduling-periodic/


Time-Triggered Cyclic Executive

14

• Advantages 
– Very simple, does not even require an online scheduler
– No overhead for context switch
– Minimal jitter

• Disadvantages
– Very fragile to overloads (domino effect)
– Does not scale and adapt easily, even to minor changes
– Difficult to handle aperiodic tasks efficiently



Dynamic scheduling
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• Rather than applying a static order of tasks, allow task scheduling to be 
computed dynamically online:

– Based on importance (priority) or any other criteria (e.g. task deadline, duration 
or creation time).

– This also simplifies the creation of tasks with arbitrary rates.
• Scheduling based on task importance

– Prioritization means that less important tasks don’t delay more important ones.
• How often does the scheduler decide what to run?

– Coarse grain: after a task finishes. It is non preemptive or Run-To-Completion (RTC)
– Fine grain: at any time. It is preemptive – one task can preempt another less important task. 



RTC: Task State and Scheduling Rules
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• The Scheduler chooses among Ready 
tasks for execution based on priority

• Events can change a task state
• Scheduling rules:

– If no task is ready, the scheduler sits in idle 
state.

– If no task is running, the scheduler starts the 
highest priority ready task, if any.

– Once started, a task runs until it completes 
(no preemption).

– Completed tasks enter the waiting state until 
released again
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Preemption: Task State and Scheduling Rules
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• The Scheduler chooses among Ready 
tasks for execution based on priority

• Scheduling rules:
– A task’s activities may lead it to waiting 

(blocked)
– A waiting task never gets the CPU. It must 

be signaled by an ISR or another task.
– Only the scheduler moves tasks between 

ready and running
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Preemptive Scheduling Algorithms (Periodic Tasks)
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• Accepted constraints for RM and EDF
– No resource sharing
– D = T, periods are fixed, worst-time execution times are fixed

• Rate Monotonic Scheduling
– Tasks with higher request rates/shorter periods have higher priorities.
– Fixed periods means fixed priorities.
– Is optimal among fixed-priority algorithms.



Preemptive Scheduling Algorithms (Periodic Tasks)
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• Rate Monotonic Scheduling

– Schedulability test: U = ∑𝑖𝑖=1𝑛𝑛 𝐶𝐶𝑖𝑖
𝑇𝑇𝑖𝑖
≤ n(2

1
𝑛𝑛 − 1)

– Schedulability test (Hyperbolic bound): ∏𝑖𝑖=1
𝑛𝑛 𝑈𝑈𝑖𝑖 + 1 ≤ 2

– Schedulability test conditions are sufficient conditions, not mandatory
– The Hyperbolic bound is less pessimistic
– The upper bound may also be relaxed when tasks’ periods form harmonic subsets

• An set of harmonic tasks is a set where any task’s period is a multiple of all shorter periods
• Example: [𝑇𝑇1,𝑇𝑇2, 𝑇𝑇3, 𝑇𝑇4] = [1, 3, 6, 12]

• The schedulability test becomes U = ∑𝑖𝑖=1𝑛𝑛 𝐶𝐶𝑖𝑖
𝑇𝑇𝑖𝑖
≤ K(2

1
𝐾𝐾 − 1), where K is the number of task subsets

• If K=1, the upper bound becomes 1.0, representing full utilization



Preemptive Scheduling Algorithms (Periodic Tasks)
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• Earliest Deadline First
– Tasks with earlier absolute deadlines will be executed at higher priorities.
– Priorities are dynamic since absolute deadlines of periodic tasks vary over time.
– Preemptive: the currently executed task is preempted whenever another periodic instance 

with an earlier deadline becomes active.

– Schedulability test: U = ∑𝑖𝑖=1𝑛𝑛 𝐶𝐶𝑖𝑖
𝑇𝑇𝑖𝑖
≤ 1

• Deadline monotonic
– Both RM and EDF assume that the deadline is the end of the period

• A task instance can be executed anytime within its period
– Deadline monotonic is an extension of RM that releases this constraint
– Like RM, it uses fixed priorities and the priority is inversely proportional to the deadline
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