
MA_EmbReal
Mix of Periodic and Aperiodic Tasks
Version: 1.2

Serge Ayer – Luca Haab | 17.03.2025 | Cours MSE



Recall: Our Mission

2



Recall: Our mission

3

• Program with a mix of periodic / aperiodic tasks
– Address first scheduling of periodic tasks
– Add aperiodic tasks
– Add dependencies among tasks

• Demonstrate that a schedule is feasible given a set of tasks with their 
constraints and dependencies

– Use known bounds and elaborate a feasible schedule
– Compute bounds for blocking times

• Use the appropriate scheduling algorithm in simulation and practice
• Implement a system that meets timing constraints

– With functional safety concepts
– With timing constraints watchdogs



Aperiodic Tasks

4



Aperiodic Tasks

5

• Aperiodic tasks = arrival time is not predictable
• Scheduling algorithms can be classified using the α | β | γ notation (Graham 

et al., 1979)
– α: environment (uniprocessor, multiprocessor, distributed, etc..)
– β: task/resource characteristics (preemptive, independent, etc..)
– γ: optimality criterion or performance measure (feasible or infeasible schedules)

• Our interest goes towards:
– α: 1
– β: dependent, possibly preemptive
– γ: maximum lateness or the maximum number of late tasks

Copy of the paper: https://mat.uab.cat/~alseda/MasterOpt/79_03_scheduling_survey.pdf



Some typical scenarios

6

• α | β | γ = 2 | sync | 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚
– Schedules aperiodic tasks on a 2-processor systems for minimizing the 

maximum lateness
– Tasks are independent tasks with synchronous arrival times with different 

computation times and deadlines
• α | β | γ = 1 | preem | 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚

– Schedules aperiodic tasks on a single processor for minimizing the maximum 
lateness.

– Arbitrary arrival times, preemptive scheduling



EDF (Horn’s Algorithm)

7

• Solves the problem of scheduling a set of n independent tasks on a 
uniprocessor system

– Tasks have dynamic arrivals
– Preemption is allowed

• EDF theorem:
– “Given a set of n independent tasks with arbitrary arrival times, any algorithm that at any 

instant executes the task with the earliest absolute deadline among all the ready tasks is 
optimal with respect to minimizing the maximum lateness”

– This also means that EDF is optimal in the sense of feasibility: if there exists a feasible 
schedule for a task set, then EDF will find it.

• Guarantee of feasibility:
– When tasks have dynamic arrival times, guarantying feasibility can only be done dynamically.
– When a task arrives, it is accepted only if the new task set is feasible 



EDF (Horn’s Algorithm)
• It is NOT optimal if preemption is not allowed
• When preemption is not allowed, the stated problem becomes NP-hard 



• Most practical real-time systems require both 
types of tasks

– Periodic tasks are time-driven and execute critical 
control activities

– Aperiodic tasks are event-driven and may have hard, 
firm or soft real-time requirements

– Some aperiodic tasks may also have no real-time 
requirement

• Hybrid task sets require to
– Guarantee the schedulability of all critical tasks
– Provide good average response times for other tasks

Hybrid tasks: Mix of Periodicity and Aperiodicity

9



• Off-line guarantee for aperiodic tasks
– Only with a proper assumption on the maximum arrival 

rate for critical aperiodic tasks
– This sets a bound on the load for aperiodic tasks that are 

thus characterized by a minimum interarrival time

• Without further assumption, on-line guarantee 
has to be computed

– Tasks entering the system go through an acceptance test
– This can only be done for tasks with firm or soft real-time 

constraints, since tasks with hard real-time constraints 
cannot be rejected

– Aperiodic tasks with firm or soft real-time constraints are 
usually called sporadic tasks

Hybrid tasks: Mix of Periodicity and Aperiodicity

10



Assumptions for Scheduling of Hybrid Tasks

11

• Periodic tasks are scheduled using RM (fixed priority)
• All periodic tasks starts simultaneously ( 𝜙𝜙𝑖𝑖= 0 ) with deadline 

matching the period ( 𝑇𝑇𝑖𝑖 = 𝐷𝐷𝑖𝑖 )
• Arrival times of aperiodic tasks are unknown
• Minimum interarrival time of each aperiodic task is equal to its 

deadline
• All tasks are preemptable



Handling Aperiodic Tasks

12



Aperiodic Tasks: Background Scheduling

13

• Schedule aperiodic tasks in the background
– in time slots where no periodic task is ready to execute

• Schedulability of periodic tasks is left unchanged
– Background scheduling does not influence the execution of periodic tasks

• Simple to implement
– RM as usual (tasks are queued based on their fixed priority)
– Add a low priority queue (e.g. FCFS) for aperiodic tasks

• Main disadvantage
– When the load of periodic tasks is high, then the response time of aperiodic tasks can be too long

• Applicable only when 
– The load of periodic tasks is low enough
– The timing constraints of aperiodic tasks are not stringent



Background 
Scheduling

14



Background 
Scheduling

15



Background 
Scheduling

16



Background 
Scheduling

17



Background 
Scheduling

18



Background 
Scheduling

19



Background 
Scheduling

20



Sporadic Tasks: Servers

21

• Background scheduling is not appropriate for sporadic tasks
– Sporadic tasks have to meet some timing constraints
– Demonstrating the schedulability of aperiodic tasks is not feasible in general with background scheduling

• Improve the average response time of sporadic tasks
– Add a periodic task for serving sporadic tasks as soon as possible
– This periodic task has its own period 𝑇𝑇𝑠𝑠 and computation time 𝐶𝐶𝑠𝑠 (server capacity or budget)

• The server task is scheduled with the same algorithm used for periodic tasks
– Sporadic tasks are served within the limit of the budget
– The ordering of sporadic tasks does not depend on the scheduling algorithm itself
– The ordering can be based on arrival time, computation time, deadline or any other criterion.

• Different flavors
– Depending on priority
– Depending on how budgets are replenished



Sporadic Tasks: Polling Server

22

• Server implementing a simple algorithm
– At interval 𝑇𝑇𝑠𝑠, the polling server task becomes active for serving the pending sporadic tasks
– The task is executed within the limit of the computation time 𝐶𝐶𝑠𝑠
– If no (further) sporadic task is pending, the polling server task suspends itself
– In this case, cooperative scheduling is applied: since the task suspends itself, other periodic tasks may 

execute as soon as the task is suspended

• Schedulability tests
– In the worst case, it acts as adding a polling server task with the given 𝑇𝑇𝑠𝑠 and 𝐶𝐶𝑠𝑠 to the set of periodic tasks
– Sporadic tasks do not get more than 𝐶𝐶𝑠𝑠 every 𝑇𝑇𝑠𝑠, so adapted bounds are valid

�
𝑖𝑖=1

𝑛𝑛
𝐶𝐶𝑖𝑖
𝑇𝑇𝑖𝑖

+
𝐶𝐶𝑠𝑠
𝑇𝑇𝑠𝑠
≤ n + 1 (2

1
(𝑛𝑛+1) − 1)

�
𝑖𝑖=1

𝑛𝑛

𝑈𝑈𝑖𝑖 + 1 ≤
2

𝑈𝑈𝑠𝑠 + 1

– Note that more than one polling server task can be created, with different priorities
– Schedulability analysis applies in the same way in this case



Polling Server Dimensioning

23

• Given a known set of periodic tasks with a feasible schedule, how can 𝑇𝑇𝑠𝑠 and 𝐶𝐶𝑠𝑠 be computed 
such that feasibility remains

• In other words, we need to find 𝑈𝑈𝑠𝑠= 𝐶𝐶𝑠𝑠
𝑇𝑇𝑠𝑠

that guarantees feasibility of the augmented task set.

• Bound for 𝑈𝑈𝑠𝑠: given P ≝ ∏𝑖𝑖=1
𝑛𝑛 𝑈𝑈𝑖𝑖 + 1 , we have 𝑃𝑃 ≤ 2

𝑈𝑈𝑠𝑠+1
and thus 𝑈𝑈𝑠𝑠 ≤

2−𝑃𝑃
𝑃𝑃

• This gives a bound for 𝑈𝑈𝑠𝑠 and an infinite number of (𝑇𝑇𝑠𝑠, 𝐶𝐶𝑠𝑠) pairs
• For improving responsiveness of sporadic tasks, choose the smallest 𝑇𝑇𝑠𝑠, meaning a task with 

higher priority under RM
• Balance this choice with runtime overhead

– It is not useful to choose 𝑇𝑇𝑠𝑠 ≤ 𝑇𝑇1 , where 𝑇𝑇1 is the shortest period among all periods
– For privileging the server, choose 𝑇𝑇𝑠𝑠 = 𝑇𝑇1 and 𝐶𝐶𝑠𝑠 = 𝑈𝑈𝑠𝑠 𝑇𝑇𝑠𝑠
– In the case that the server gets the highest priority, the schedulability of a sporadic task (𝑇𝑇𝑚𝑚,𝐶𝐶𝑚𝑚) can be 

guaranteed based on (𝑇𝑇𝑠𝑠 ,𝐶𝐶𝑠𝑠 ) (formula relating all values)
– Note that the schedulability of a sporadic task can be established by computing the maximum response time



Polling 
Server

24

𝑃𝑃 = �
𝑖𝑖=1

2

𝑈𝑈𝑖𝑖 + 1 =
5
4
𝑥𝑥

8
6

=
10
6
≤ 2 𝑈𝑈𝑆𝑆 ≤

2 − 𝑃𝑃
𝑃𝑃

=
2

10
,𝑇𝑇𝑆𝑆 = 5,𝐶𝐶𝑆𝑆 = 1



Polling 
Server

25



Polling 
Server

26



Polling 
Server

27



Polling 
Server

28



Polling 
Server

29



Polling 
Server

30



Polling 
Server

31

Why not use C = 2, for a larger server budget?

𝑈𝑈 =
59
60

< 1



Polling 
Server

32

Why not use C = 2, for a larger server budget?

�
𝑖𝑖=1

3

𝑈𝑈𝑖𝑖 + 1 =
14
6

> 2 !



Sporadic Tasks: Deferrable Server

33

• Similar to Polling Server
• Differentiates itself in the way the server budget is replenished

– The budget is consumed when the server executes (similar)
– Once scheduled, the unused budget is retained throughout the entire period
– So the budget can be used whenever an sporadic task is ready to execute
– No need to arrive before the polling instant

• This improves the response time of sporadic tasks



Deferrable Server 
Dimensioning
• With a deferrable server, one 

of the RM rule breaks:
– At any time, RM executes the highest-

priority task that is ready

• This is not true anymore with 
a deferrable server, since the 
execution of a highest-priority 
task can be deferred

• The schedulability bound is 
lower and needs to be 
recomputed

4 8 12



Deferrable Server Dimensioning

35

• Given a set of 𝑛𝑛 periodic tasks with utilization factor 𝑈𝑈𝑝𝑝 and a deferrable server with 
utilization factor 𝑈𝑈𝑠𝑠, then the schedulability of the period task set (𝑛𝑛 periodic tasks + 
deferrable server) under RM is guaranteed if

𝑈𝑈𝑝𝑝 ≤ 𝑛𝑛 (𝐾𝐾
1
𝑛𝑛 − 1)

where 𝐾𝐾 = 𝑈𝑈𝑠𝑠+2
2𝑈𝑈𝑆𝑆+1

• Using the Hyperbolic bound, the schedulability with a deferrable server is guaranteed if
given P ≝ ∏𝑖𝑖=1

𝑛𝑛 𝑈𝑈𝑖𝑖 + 1

𝑃𝑃 ≤ 𝑈𝑈𝑆𝑆+ 2
2𝑈𝑈𝑠𝑠+1

and thus 𝑈𝑈𝑠𝑠 ≤
2 −𝑃𝑃
2𝑃𝑃 −1



Deferrable 
Server

36

𝑃𝑃 = �
𝑖𝑖=1

2

𝑈𝑈𝑖𝑖 + 1 =
6
5
𝑥𝑥

10
8

=
3
2
≤ 2 𝑈𝑈𝑆𝑆 ≤

2 − 𝑃𝑃
2𝑃𝑃 − 1

=
1
4

,𝑇𝑇𝑆𝑆 = 4,𝐶𝐶𝑆𝑆 = 1



Deferrable 
Server

37



Deferrable 
Server

38



Deferrable 
Server

39



Deferrable 
Server

40



Deferrable 
Server

41



Deferrable 
Server

42



Aperiodic Guarantee using Servers

43

• Aperiodic Guarantee = Guarantee that an aperiodic task with timing constraint can be 
performed within the deadline

• The task is accepted only if the guarantee exists = acceptance test
• For both Polling and Deferrable Servers, the acceptance test can be computed on-

line
– Very hard to be computed off-line

• This test is computed by estimating the worst-case response time
• It can be computed only when the server task has the highest priority among all tasks

– Highest priority means that the server task always executes at the beginning of its period
– In this case, the finishing time of the aperiodic request can be estimated precisely

• The computation of the online guarantee is left out from this lecture
– However, the principle of an acceptance test and of its use in a system should be understood



Other fixed-priority servers

44

• Mostly differ in the way the server budget is replenished or in the way the server 
budget is allocated

• Priority Exchange: 
– Server budget is preserved by exchanging it for the execution time of lower-priority tasks

• Sporadic Server:
– Enhances the average response time of aperiodic tasks 
– Preserves the utilization bound of the periodic task set

• Slack Stealing
– Provides a better average response time as compared to other fixed-priority servers
– Steals time from periodic tasks without causing their deadlines to be missed
– Better because there is no benefit in early completion of periodic tasks (as long as theirs deadlines is 

respected)



Summary: fixed-priority servers

45

Performance Computational 
Complexity

Memory 
Requirement

Implementation 
Complexity

Background 
Scheduling Very Low Low Low Low

Polling Server Low Low Low Some 
constraints

Deferrable 
Server Ok Low Low Low

Other servers provide better performance at the 
cost of more complexity and memory requirement



Summary: system model

46

• Single processor
• All tasks are preemptable
• Periodic tasks scheduled using 

RM
• Aperiodic tasks are executed 

using a background task
• Sporadic tasks are executed using 

a server task
• Sporadic task can be rejected if 

they do not pass the acceptance 
test

• Aperiodic task queues have their 
own queuing strategy (FCFS, 
priority-based, etc.)

• A system can implement all or 
only some of these sub-systems


	Slide Number 1
	Recall: Our Mission
	Recall: Our mission
	Aperiodic Tasks
	Aperiodic Tasks
	Some typical scenarios
	EDF (Horn’s Algorithm)
	EDF (Horn’s Algorithm)
	Hybrid tasks: Mix of Periodicity and Aperiodicity
	Hybrid tasks: Mix of Periodicity and Aperiodicity
	Assumptions for Scheduling of Hybrid Tasks
	Handling Aperiodic Tasks
	Aperiodic Tasks: Background Scheduling
	Background Scheduling
	Background Scheduling
	Background Scheduling
	Background Scheduling
	Background Scheduling
	Background Scheduling
	Background Scheduling
	Sporadic Tasks: Servers
	Sporadic Tasks: Polling Server
	Polling Server Dimensioning
	Polling Server
	Polling Server
	Polling Server
	Polling Server
	Polling Server
	Polling Server
	Polling Server
	Polling Server
	Polling Server
	Sporadic Tasks: Deferrable Server
	Deferrable Server Dimensioning
	Deferrable Server Dimensioning
	Deferrable Server
	Deferrable Server
	Deferrable Server
	Deferrable Server
	Deferrable Server
	Deferrable Server
	Deferrable Server
	Aperiodic Guarantee using Servers
	Other fixed-priority servers
	Summary: fixed-priority servers
	Summary: system model

